TY - JOUR
T1 - Using Storylines to Support Three-Dimensional Learning in Project-Based Science
AU - Nordine, Jeffrey
AU - Krajcik, Joseph
AU - Fortus, David
AU - Neumann, Knut
PY - 2019/2/1
Y1 - 2019/2/1
N2 - Project-based learning (PBL) engages students via collaboration on sustained investigations to make sense of interesting and meaningful phenomena. Over the last several years, we have worked with classroom teachers to design and enact project-based science units that engage middle grade learners and help them meet important learning goals aligned with the NGSS (NGSS Lead States 2013). We have found that developing storylines for our units allowed us to design coherent learning environments that helped students make sense of phenomena and meet important learning goals. Thinking in terms of storylines has helped us articulate how students can figure out over time, piece-by-piece, the mechanisms governing how a phenomenon works. A storyline shows how the three dimensions of science knowledge—disciplinary core ideas (DCIs), science and engineering practices (SEPs), and crosscutting concepts (CCs)— develop over time to build sophisticated ideas from prior ideas (Krajcik et al. 2014; Reiser, Novak, and McGill 2017). In this article, we present our process for developing storylines and we share a planning tool that we have used to connect learning experiences into a coherent storyline that runs throughout a project-based science unit. This process has been used by teachers and researchers to develop project-based science units (Bielik, Damelin, and Krajcik 2018). Throughout this article, we give examples of how storylines helped us design a project-based unit to support the type of three-dimensional learning about energy described in A Framework for K–12 Science Education and the NGSS (NRC 2012; NGSS Lead States 2013).
AB - Project-based learning (PBL) engages students via collaboration on sustained investigations to make sense of interesting and meaningful phenomena. Over the last several years, we have worked with classroom teachers to design and enact project-based science units that engage middle grade learners and help them meet important learning goals aligned with the NGSS (NGSS Lead States 2013). We have found that developing storylines for our units allowed us to design coherent learning environments that helped students make sense of phenomena and meet important learning goals. Thinking in terms of storylines has helped us articulate how students can figure out over time, piece-by-piece, the mechanisms governing how a phenomenon works. A storyline shows how the three dimensions of science knowledge—disciplinary core ideas (DCIs), science and engineering practices (SEPs), and crosscutting concepts (CCs)— develop over time to build sophisticated ideas from prior ideas (Krajcik et al. 2014; Reiser, Novak, and McGill 2017). In this article, we present our process for developing storylines and we share a planning tool that we have used to connect learning experiences into a coherent storyline that runs throughout a project-based science unit. This process has been used by teachers and researchers to develop project-based science units (Bielik, Damelin, and Krajcik 2018). Throughout this article, we give examples of how storylines helped us design a project-based unit to support the type of three-dimensional learning about energy described in A Framework for K–12 Science Education and the NGSS (NRC 2012; NGSS Lead States 2013).
M3 - مقالة
SN - 0887-2376
VL - 42
JO - Science scope (Washington, D.C.)
JF - Science scope (Washington, D.C.)
IS - 6
ER -