Using deep learning to model the hierarchical structure and function of a cell

Jianzhu Ma, Michael Ku Yu, Samson Fong, Keiichiro Ono, Eric Sage, Barry Demchak, Roded Sharan, Trey Ideker

Research output: Contribution to journalArticlepeer-review

Abstract

Although artificial neural networks are powerful classifiers, their internal structures are hard to interpret. In the life sciences, extensive knowledge of cell biology provides an opportunity to design visible neural networks (VNNs) that couple the model's inner workings to those of real systems. Here we develop DCell, a VNN embedded in the hierarchical structure of 2,526 subsystems comprising a eukaryotic cell (http://d-cell.ucsd.edu/). Trained on several million genotypes, DCell simulates cellular growth nearly as accurately as laboratory observations. During simulation, genotypes induce patterns of subsystem activities, enabling in silico investigations of the molecular mechanisms underlying genotype-phenotype associations. These mechanisms can be validated, and many are unexpected; some are governed by Boolean logic. Cumulatively, 80% of the importance for growth prediction is captured by 484 subsystems (21%), reflecting the emergence of a complex phenotype. DCell provides a foundation for decoding the genetics of disease, drug resistance and synthetic life.

Original languageEnglish
Pages (from-to)290-298
Number of pages9
JournalNature Methods
Volume15
Issue number4
DOIs
StatePublished - 3 Apr 2018

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Using deep learning to model the hierarchical structure and function of a cell'. Together they form a unique fingerprint.

Cite this