Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFexCo1-xPO4

Fiona C. Strobridge, Hao Liu, Michal Leskes, Olaf J. Borkiewicz, Kamila M. Wiaderek, Peter J. Chupas, Karena W. Chapman, Clare P. Grey

Research output: Contribution to journalArticlepeer-review

Abstract

The delithiation mechanisms occurring within the olivine-type class of cathode materials for Li-ion batteries have received considerable attention because of the good capacity retention at high rates for LiFePO4. A comprehensive mechanistic study of the (de)lithiation reactions that occur when the substituted olivine-type cathode materials LiFexCo1-xPO4 (x = 0, 0.05, 0.125, 0.25, 0.5, 0.75, 0.875, 0.95, 1) are electrochemically cycled is reported here using in situ X-ray diffraction (XRD) data and supporting ex situ 31P NMR spectra. On the first charge, two intermediate phases are observed and identified: Li1-x(Fe3+)x(Co2+)1-xPO4 for 0 < x < 1 (i.e., after oxidation of Fe2+ to Fe3+) and Li2/3FexCo1-xPO4 for 0 ≤ x ≤ 0.5 (i.e., the Co-majority materials). For the Fe-rich materials, we study how nonequilibrium, single-phase mechanisms that occur discretely in single particles, as observed for LiFePO4 at high rates, are affected by Co substitution. In the Co-majority materials, a two-phase mechanism with a coherent interface is observed, as was seen in LiCoPO4, and we discuss how it is manifested in the XRD patterns. We then compare the nonequilibrium, single-phase mechanism with the bulk single-phase and coherent interface two-phase mechanisms. Despite the apparent differences between these mechanisms, we discuss how they are related and interconverted as a function of Fe/Co substitution and the potential implications for the electrochemistry of this system.

Original languageEnglish
Pages (from-to)3676-3690
Number of pages15
JournalChemistry of Materials
Volume28
Issue number11
DOIs
StatePublished - 14 Jun 2016

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Chemical Engineering
  • Materials Chemistry

Cite this