@inproceedings{e3dfd2a6cfb046b8b609bc2764e12d14,
title = "Unnatural Instructions: Tuning Language Models with (Almost) No Human Labor",
abstract = "Instruction tuning enables pretrained language models to perform new tasks from inference-time natural language descriptions. These approaches rely on vast amounts of human supervision in the form of crowdsourced datasets or user interactions. In this work, we introduce Unnatural Instructions: a large dataset of creative and diverse instructions, collected with virtually no human labor. We collect 64,000 examples by prompting a language model with three seed examples of instructions and eliciting a fourth. This set is then expanded by prompting the model to rephrase each instruction, creating a total of approximately 240,000 examples of instructions, inputs, and outputs. Experiments show that despite containing a fair amount of noise, training on Unnatural Instructions rivals the effectiveness of training on open-source manually-curated datasets, surpassing the performance of models such as T0++ and Tk-Instruct across various benchmarks. These results demonstrate the potential of model-generated data as a cost-effective alternative to crowdsourcing for dataset expansion and diversification.",
author = "Or Honovich and Thomas Scialom and Omer Levy and Timo Schick",
note = "Publisher Copyright: {\textcopyright} 2023 Association for Computational Linguistics.; 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 ; Conference date: 09-07-2023 Through 14-07-2023",
year = "2023",
language = "الإنجليزيّة",
series = "Proceedings of the Annual Meeting of the Association for Computational Linguistics",
publisher = "Association for Computational Linguistics (ACL)",
pages = "14409--14428",
booktitle = "Long Papers",
address = "الولايات المتّحدة",
}