Universal Randomized Guessing with Application to Asynchronous Decentralized Brute - Force Attacks

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Consider the problem of guessing a random vector X by submitting queries (guesses) of the form "Is X equal to x?" until an affirmative answer is obtained. A key figure of merit is the number of queries required until the right vector is guessed, termed the guesswork. The goal is to devise a guessing strategy which minimizes a certain guesswork moment. We study a universal, decentralized scenario where the guesser does not know the distribution of X, and is not allowed to prepare a list of words to be guessed in advance, or to remember its past guesses. Such a scenario is useful, for example, if bots within a Botnet carry out a brute-force attack to guess a password or decrypt a message, yet cannot coordinate the guesses or even know how many bots actually participate in the attack. We devise universal decentralized guessing strategies, first, for memoryless sources, and then generalize them to finite-state sources. For both, we derive the guessing exponent and prove its asymptotic optimality by deriving a matching converse. The strategies are based on randomized guessing using a universal distribution. We also extend the results to guessing with side information (SI). Finally, we design simple algorithms for sampling from the universal distributions.

Original languageEnglish
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
Pages485-489
Number of pages5
ISBN (Electronic)9781538692912
DOIs
StatePublished - 1 Jul 2019
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: 7 Jul 201912 Jul 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
Country/TerritoryFrance
CityParis
Period7/07/1912/07/19

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Universal Randomized Guessing with Application to Asynchronous Decentralized Brute - Force Attacks'. Together they form a unique fingerprint.

Cite this