Universal chiral quasisteady states in periodically driven many-body systems

Netanel H. Lindner, Erez Berg, Mark S. Rudner

Research output: Contribution to journalArticlepeer-review

Abstract

We investigate many-body dynamics in a one-dimensional interacting periodically driven system, based on a partially filled version of Thouless's topologically quantized adiabatic pump. The corresponding single-particle Floquet bands are chiral, with the Floquet spectrum realizing nontrivial cycles around the quasienergy Brillouin zone. For generic filling, with either bosons or fermions, the system is gapless and is expected to rapidly absorb energy from the driving field. We identify parameter regimes where scattering between Floquet bands of opposite chirality is exponentially suppressed, opening a long time window in which the system prethermalizes to an infinite-temperature state restricted to a single Floquet band. In this quasi-steady state, the time-averaged current takes a universal value determined solely by the density of particles and the topological winding number of the populated Floquet band. This remarkable behavior may be readily studied experimentally in recently developed cold atom systems.

Original languageEnglish
Article number011018
JournalPhysical Review X
Volume7
Issue number1
DOIs
StatePublished - 17 Feb 2017

Keywords

  • Atomic and molecular physics
  • Condensed matter physics
  • Quantum physics

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Universal chiral quasisteady states in periodically driven many-body systems'. Together they form a unique fingerprint.

Cite this