TY - GEN
T1 - Unique properties of flat minima in deep networks
AU - Mulayoff, Rotem
AU - Michaeli, Tomer
N1 - Publisher Copyright: © 2020 37th International Conference on Machine Learning, ICML 2020. All rights reserved.
PY - 2020
Y1 - 2020
N2 - It is well known that (stochastic) gradient descent has an implicit bias towards flat minima. In deep neural network training, this mechanism serves to screen out minima. However, the precise effect that this has on the trained network is not yet fully understood. In this paper, we characterize the flat minima in linear neural networks trained with a quadratic loss. First, we show that linear ResNets with zero initialization necessarily converge to the flattest of all minima. We then prove that these minima correspond to nearly balanced networks whereby the gain from the input to any intermediate representation does not change drastically from one layer to the next. Finally, we show that consecutive layers in flat minima solutions are coupled. That is, one of the left singular vectors of each weight matrix, equals one of the right singular vectors of the next matrix. This forms a distinct path from input to output, that, as we show, is dedicated to the signal that experiences the largest gain end-to-end. Experiments indicate that these properties are characteristic of both linear and nonlinear models trained in practice.
AB - It is well known that (stochastic) gradient descent has an implicit bias towards flat minima. In deep neural network training, this mechanism serves to screen out minima. However, the precise effect that this has on the trained network is not yet fully understood. In this paper, we characterize the flat minima in linear neural networks trained with a quadratic loss. First, we show that linear ResNets with zero initialization necessarily converge to the flattest of all minima. We then prove that these minima correspond to nearly balanced networks whereby the gain from the input to any intermediate representation does not change drastically from one layer to the next. Finally, we show that consecutive layers in flat minima solutions are coupled. That is, one of the left singular vectors of each weight matrix, equals one of the right singular vectors of the next matrix. This forms a distinct path from input to output, that, as we show, is dedicated to the signal that experiences the largest gain end-to-end. Experiments indicate that these properties are characteristic of both linear and nonlinear models trained in practice.
UR - http://www.scopus.com/inward/record.url?scp=85102542169&partnerID=8YFLogxK
M3 - منشور من مؤتمر
T3 - 37th International Conference on Machine Learning, ICML 2020
SP - 7065
EP - 7075
BT - 37th International Conference on Machine Learning, ICML 2020
A2 - Daume, Hal
A2 - Singh, Aarti
T2 - 37th International Conference on Machine Learning, ICML 2020
Y2 - 13 July 2020 through 18 July 2020
ER -