Uncovering the mechanism for polar sequestration of the major bacterial sugar regulator by high-throughput screens and 3D interaction modeling

Nitsan Albocher-Kedem, Meta Heidenreich, Amir Fadel, Elizabeta Sirotkin, Omer Goldberger, Anat Nussbaum-Shochat, Emmanuel D. Levy, Ora Schueler-Furman, Maya Schuldiner, Orna Amster-Choder

Research output: Contribution to journalArticlepeer-review

Abstract

The poles of rod-shaped bacteria emerge as regulatory hubs. We have shown that enzyme I (EI), the major bacterial sugar metabolism regulator, is sequestered when not needed in TmaR phase-separated condensates in Escherichia coli cell poles. Here, we combined genetic and automated microscopy screens to identify residues in EI and TmaR that are important for their interaction and colocalization. Mutating these residues affects EI-TmaR interaction in bacteria and impairs co-phase separation in yeast. The results were used to generate an EI-TmaR interaction model, which agrees with coevolution data and is supported by conservation of the interacting residues and EI-TmaR colocalization in other species. Mutating residues predicted to interact electrostatically further supports our model. The model explains how TmaR controls EI activity and its interaction with the phosphoprotein HPr and, hence, sugar uptake. Our study highlights the importance of sugar metabolism spatial regulation during evolution and presents a way to unravel protein-protein interactions.

Original languageEnglish
Article number115436
JournalCell Reports
Volume44
Issue number3
DOIs
StatePublished - 25 Mar 2025

Keywords

  • 3D interaction modeling
  • bacterial cell poles
  • CP: Microbiology
  • CP: Molecular biology
  • enzyme I, EI
  • high-throughput screens
  • phase separation, PS
  • protein-protein interaction
  • PTS
  • subcellular localization in bacteria
  • TmaR

All Science Journal Classification (ASJC) codes

  • General Biochemistry,Genetics and Molecular Biology

Cite this