Uncovering the genetic basis of Staphylococcus aureus resistance to single antimicrobial peptides and their combinations

Bar Maron, Caroline Zanchi, Paul Johnston, Jens Rolff, Jonathan Friedman, Zvi Hayouka

Research output: Contribution to journalArticlepeer-review

Abstract

Antimicrobial resistance (AMR) poses a critical global health challenge, prompting the exploration of antimicrobial peptides (AMPs) as alternatives. Here, we investigated the genetic mechanisms of resistance evolution in Staphylococcus aureus against single and combined AMPs (temporin, melittin, and pexiganan). Whole-genome sequencing of evolved populations revealed that combination therapy significantly reduced the overall number of mutations, and importantly, did not typically lead to broad multi-AMP resistance. Instead, resistance likely focused on one component of the combination. While mutations in pmtR (toxin transport) and tagO (wall-teichoic acid biosynthesis) were common across treatments, AMP-specific mutations, such as dagK and msrR, were also identified. Notably, mutations in a hypothetical membrane protein operon (SAOUHSC_02307–02309) imply a potential pexiganan resistance pathway. The findings suggest that AMP combinations might limit mutation accumulation, while constraining the development of general AMP resistance. The genetic mechanism of resistance is complex, thus careful selection is required for designing effective AMP-based therapies.

Original languageEnglish
Article number112671
JournaliScience
Volume28
Issue number6
DOIs
StatePublished - 20 Jun 2025

Keywords

  • Evolutionary mechanisms
  • Microbial genetics
  • Molecular microbiology

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Uncovering the genetic basis of Staphylococcus aureus resistance to single antimicrobial peptides and their combinations'. Together they form a unique fingerprint.

Cite this