TY - JOUR
T1 - Uncovering the dynamics of precise repair at CRISPR/Cas9-induced double-strand breaks
AU - Ben-Tov, Daniela
AU - Mafessoni, Fabrizio
AU - Cucuy, Amit
AU - Honig, Arik
AU - Melamed-Bessudo, Cathy
AU - Levy, Avraham A.
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024/12
Y1 - 2024/12
N2 - CRISPR/Cas9 is widely used for precise mutagenesis through targeted DNA double-strand breaks (DSBs) induction followed by error-prone repair. A better understanding of this process requires measuring the rates of cutting, error-prone, and precise repair, which have remained elusive so far. Here, we present a molecular and computational toolkit for multiplexed quantification of DSB intermediates and repair products by single-molecule sequencing. Using this approach, we characterize the dynamics of DSB induction, processing and repair at endogenous loci along a 72 h time-course in tomato protoplasts. Combining this data with kinetic modeling reveals that indel accumulation is determined by the combined effect of the rates of DSB induction processing of broken ends, and precise versus error repair. In this study, 64–88% of the molecules were cleaved in the three targets analyzed, while indels ranged between 15–41%. Precise repair accounts for most of the gap between cleavage and error repair, representing up to 70% of all repair events. Altogether, this system exposes flux in the DSB repair process, decoupling induction and repair dynamics, and suggesting an essential role of high-fidelity repair in limiting the efficiency of CRISPR-mediated mutagenesis.
AB - CRISPR/Cas9 is widely used for precise mutagenesis through targeted DNA double-strand breaks (DSBs) induction followed by error-prone repair. A better understanding of this process requires measuring the rates of cutting, error-prone, and precise repair, which have remained elusive so far. Here, we present a molecular and computational toolkit for multiplexed quantification of DSB intermediates and repair products by single-molecule sequencing. Using this approach, we characterize the dynamics of DSB induction, processing and repair at endogenous loci along a 72 h time-course in tomato protoplasts. Combining this data with kinetic modeling reveals that indel accumulation is determined by the combined effect of the rates of DSB induction processing of broken ends, and precise versus error repair. In this study, 64–88% of the molecules were cleaved in the three targets analyzed, while indels ranged between 15–41%. Precise repair accounts for most of the gap between cleavage and error repair, representing up to 70% of all repair events. Altogether, this system exposes flux in the DSB repair process, decoupling induction and repair dynamics, and suggesting an essential role of high-fidelity repair in limiting the efficiency of CRISPR-mediated mutagenesis.
UR - http://www.scopus.com/inward/record.url?scp=85196048333&partnerID=8YFLogxK
U2 - 10.1038/s41467-024-49410-x
DO - 10.1038/s41467-024-49410-x
M3 - مقالة
C2 - 38877047
SN - 2041-1723
VL - 15
JO - Nature Communications
JF - Nature Communications
M1 - 5096
ER -