TypeNet: Towards Camera Enabled Touch Typing on Flat Surfaces through Self-Refinement

Ben Maman, Amit Bermano

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Text entry for mobile devices nowadays is an equally crucial and time-consuming task, with no practical solution available for natural typing speeds without extra hardware. In this paper, we introduce a real-time method that is a significant step towards enabling touch typing on arbitrary flat surfaces (e.g., tables). The method employs only a simple video camera, placed in front of the user on the flat surface - at an angle practical for mobile usage. To achieve this, we adopt a classification framework, based on the observation that, in touch typing, similar hand configurations imply the same typed character across users. Importantly, this approach allows the convenience of un-calibrated typing, where the hand positions, with respect to the camera and each other, are not dictated.To improve accuracy, we propose a Language Processing scheme, which corrects the typed text and is specifically designed for real-time performance and integration with the vision-based signal. To enable feasible data collection and training, we propose a self-refinement approach that allows training on unlabeled flat-surface-typing footage; A network trained on (labeled) keyboard footage labels flat-surface videos using dynamic time warping, and is trained on them, in an Expectation Maximization (EM) manner.Using these techniques, we introduce the TypingHands26 Dataset, comprising videos of 26 different users typing on a keyboard, and 10 users typing on a flat surface, labeled at the frame level. We validate our approach and present a single camera-based system with character-level accuracy of 93.5% on average for known users, and 85.7% for unknown ones, outperforming pose-estimation-based methods by a large margin, despite performing at natural typing speeds of up to 80 Words Per Minute. Our method is the first to rely on a simple camera alone, and runs in interactive speeds, while still maintaining accuracy comparable to systems employing non-commodity equipment.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages567-576
Number of pages10
ISBN (Electronic)9781665409155
DOIs
StatePublished - 2022
Event22nd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022 - Waikoloa, United States
Duration: 4 Jan 20228 Jan 2022

Publication series

NameProceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022

Conference

Conference22nd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022
Country/TerritoryUnited States
CityWaikoloa
Period4/01/228/01/22

Keywords

  • Human-Computer Interaction Action and Behavior Recognition
  • Vision Systems and Applications
  • Vision and Languages

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'TypeNet: Towards Camera Enabled Touch Typing on Flat Surfaces through Self-Refinement'. Together they form a unique fingerprint.

Cite this