Two-sided reflection of Markov-modulated brownian motion

B. D'Auria, J. Ivanovs, O. Kella, M. Mandjes

Research output: Contribution to journalArticlepeer-review

Abstract

This article considers a Markov-modulated Brownian motion with a two-sided reflection. For this doubly-reflected process we compute the Laplace transform of the stationary distribution, as well as the average loss rates at both barriers. Our approach relies on spectral properties of the matrix polynomial associated with the generator of the free (that is, non-reflected) process. This work generalizes previous partial results allowing the spectrum of the generator to be non-semi-simple and also covers the delicate case where the asymptotic drift of the free process is zero.

Original languageEnglish
Pages (from-to)316-332
Number of pages17
JournalStochastic Models
Volume28
Issue number2
DOIs
StatePublished - 1 Apr 2012

Keywords

  • Markov additive process
  • Markov-modulated Brownian motion
  • Skorohod reflection
  • Two-sided reflection

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Modelling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Two-sided reflection of Markov-modulated brownian motion'. Together they form a unique fingerprint.

Cite this