TY - JOUR
T1 - Turbulent transport of energy across a forest and a semiarid shrubland
AU - Banerjee, Tirtha
AU - Brugger, Peter
AU - De Roo, Frederik
AU - Kroeniger, Konstantin
AU - Yakir, Dan
AU - Rotenberg, Eyal
AU - Mauder, Matthias
N1 - This research was supported by the German Research Foundation (DFG) as part of the project “Climate feedbacks and benefits of semi-arid forests” (CliFF) and the project “Capturing all relevant scales of biosphere–atmosphere exchange – the enigmatic energy balance closure problem”, which is funded by the Helmholtz-Association through the President's Initiative and Networking Fund and by KIT. Author contributions. TB did the data analysis and wrote the paper. PB collected the data, FDR, and KK helped in the interpretation. MM, DY and EY oversaw the whole project and was involved in the entire workflow, starting from data collection to data analysis and interpretation.
PY - 2018/7/16
Y1 - 2018/7/16
N2 - The role of secondary circulations has recently been studied in the context of well-defined surface heterogeneity in a semiarid ecosystem where it was found that energy balance closure over a desert-forest system and the structure of the boundary layer was impacted by advection and flux divergence. As a part of the CliFF ("Climate feedbacks and benefits of semi-arid forests", a collaboration between KIT, Germany, and the Weizmann Institute, Israel) campaign, we studied the boundary layer dynamics and turbulent transport of energy corresponding to this effect in Yatir Forest situated in the Negev Desert in Israel. The forest surrounded by small shrubs presents a distinct feature of surface heterogeneity, allowing us to study the differences between their interactions with the atmosphere above by conducting measurements with two eddy covariance (EC) stations and two Doppler lidars. As expected, the turbulence intensity and vertical fluxes of momentum and sensible heat are found to be higher above the forest compared to the shrubland. Turbulent statistics indicative of nonlocal motions are also found to differ over the forest and shrubland and also display a strong diurnal cycle. The production of turbulent kinetic energy (TKE) over the forest is strongly mechanical, while buoyancy effects generate most of the TKE over the shrubland. Overall TKE production is much higher above the forest compared to the shrubland. The forest is also found to be more efficient in dissipating TKE. The TKE budget appears to be balanced on average both for the forest and shrubland, although the imbalance of the TKE budget, which includes the role of TKE transport, is found to be quite different in terms of diurnal cycles for the forest and shrubland. The difference in turbulent quantities and the relationships between the components of TKE budget are used to infer the characteristics of the turbulent transport of energy between the desert and the forest.
AB - The role of secondary circulations has recently been studied in the context of well-defined surface heterogeneity in a semiarid ecosystem where it was found that energy balance closure over a desert-forest system and the structure of the boundary layer was impacted by advection and flux divergence. As a part of the CliFF ("Climate feedbacks and benefits of semi-arid forests", a collaboration between KIT, Germany, and the Weizmann Institute, Israel) campaign, we studied the boundary layer dynamics and turbulent transport of energy corresponding to this effect in Yatir Forest situated in the Negev Desert in Israel. The forest surrounded by small shrubs presents a distinct feature of surface heterogeneity, allowing us to study the differences between their interactions with the atmosphere above by conducting measurements with two eddy covariance (EC) stations and two Doppler lidars. As expected, the turbulence intensity and vertical fluxes of momentum and sensible heat are found to be higher above the forest compared to the shrubland. Turbulent statistics indicative of nonlocal motions are also found to differ over the forest and shrubland and also display a strong diurnal cycle. The production of turbulent kinetic energy (TKE) over the forest is strongly mechanical, while buoyancy effects generate most of the TKE over the shrubland. Overall TKE production is much higher above the forest compared to the shrubland. The forest is also found to be more efficient in dissipating TKE. The TKE budget appears to be balanced on average both for the forest and shrubland, although the imbalance of the TKE budget, which includes the role of TKE transport, is found to be quite different in terms of diurnal cycles for the forest and shrubland. The difference in turbulent quantities and the relationships between the components of TKE budget are used to infer the characteristics of the turbulent transport of energy between the desert and the forest.
UR - http://www.scopus.com/inward/record.url?scp=85050198154&partnerID=8YFLogxK
U2 - https://doi.org/10.5194/acp-18-10025-2018
DO - https://doi.org/10.5194/acp-18-10025-2018
M3 - مقالة
SN - 1680-7316
VL - 18
SP - 10025
EP - 10038
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 13
ER -