Translational Regulation of Pmt1 and Pmt2 by Bfr1 Affects Unfolded Protein O-Mannosylation

Joan Castells-Ballester, Natalie Rinis, Ilgin Kotan, Lihi Gal, Daniela Bausewein, Ilia Kats, Ewa Zatorska, Guenter Kramer, Bernd Bukau, Maya Schuldiner, Sabine Strahl

Research output: Contribution to journalArticlepeer-review

Abstract

O-mannosylation is implicated in protein quality control in Saccharomyces cerevisiae due to the attachment of mannose to serine and threonine residues of un- or misfolded proteins in the endoplasmic reticulum (ER). This process also designated as unfolded protein O-mannosylation (UPOM) that ends futile folding cycles and saves cellular resources is mainly mediated by protein O-mannosyltransferases Pmt1 and Pmt2. Here we describe a genetic screen for factors that influence O-mannosylation in yeast, using slow-folding green fluorescent protein (GFP) as a reporter. Our screening identifies the RNA binding protein brefeldin A resistance factor 1 (Bfr1) that has not been linked to O-mannosylation and ER protein quality control before. We find that Bfr1 affects O-mannosylation through changes in Pmt1 and Pmt2 protein abundance but has no effect on PMT1 and PMT2 transcript levels, mRNA localization to the ER membrane or protein stability. Ribosome profiling reveals that Bfr1 is a crucial factor for Pmt1 and Pmt2 translation thereby affecting unfolded protein O-mannosylation. Our results uncover a new level of regulation of protein quality control in the secretory pathway.

Original languageEnglish
Article number6220
Number of pages27
JournalINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volume20
Issue number24
DOIs
StatePublished - 10 Dec 2019

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Spectroscopy
  • Catalysis
  • Inorganic Chemistry
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Translational Regulation of Pmt1 and Pmt2 by Bfr1 Affects Unfolded Protein O-Mannosylation'. Together they form a unique fingerprint.

Cite this