Transformer Feed-Forward Layers Build Predictions by Promoting Concepts in the Vocabulary Space

Mor Geva, Avi Caciularu, Kevin Ro Wang, Yoav Goldberg

Research output: Contribution to conferencePaperpeer-review

Abstract

Transformer-based language models (LMs) are at the core of modern NLP, but their internal prediction construction process is opaque and largely not understood. In this work, we make a substantial step towards unveiling this underlying prediction process, by reverse-engineering the operation of the feed-forward network (FFN) layers, one of the building blocks of transformer models. We view the token representation as a changing distribution over the vocabulary, and the output from each FFN layer as an additive update to that distribution. Then, we analyze the FFN updates in the vocabulary space, showing that each update can be decomposed to sub-updates corresponding to single FFN parameter vectors, each promoting concepts that are often human-interpretable. We then leverage these findings for controlling LM predictions, where we reduce the toxicity of GPT2 by almost 50%, and for improving computation efficiency with a simple early exit rule, saving 20% of computation on average.

Original languageEnglish
Pages30-45
Number of pages16
StatePublished - 2022
Event2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022 - Abu Dhabi, United Arab Emirates
Duration: 7 Dec 202211 Dec 2022

Conference

Conference2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period7/12/2211/12/22

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'Transformer Feed-Forward Layers Build Predictions by Promoting Concepts in the Vocabulary Space'. Together they form a unique fingerprint.

Cite this