@inproceedings{5dd47330fa204a4aa4ddf46836480982,
title = "Transformaly - Two (Feature Spaces) Are Better Than One",
abstract = "Anomaly detection is a well-established research area that seeks to identify samples outside of a predetermined distribution. An anomaly detection pipeline is comprised of two main stages: (1) feature extraction and (2) normality score assignment. Recent papers used pre-trained networks for feature extraction achieving state-of-the-art results. However, the use of pre-trained networks does not fully-utilize the normal samples that are available at train time. This paper suggests taking advantage of this information by using teacher-student training. In our setting, a pre-trained teacher network is used to train a student network on the normal training samples. Since the student network is trained only on normal samples, it is expected to deviate from the teacher network in abnormal cases. This difference can serve as a complementary representation to the pre-trained feature vector. Our method - T ransformaly - exploits a pre-trained Vision Transformer (ViT) to extract both feature vectors: the pre-trained (agnostic) features and the teacher-student (fine-tuned) features. We report state-of-the-art AUROC results in both the common unimodal setting, where one class is considered normal and the rest are considered abnormal, and the multimodal setting, where all classes but one are considered normal, and just one class is considered abnormal 1.",
author = "Cohen, {Matan Jacob} and Shai Avidan",
note = "Publisher Copyright: {\textcopyright} 2022 IEEE.; 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022 ; Conference date: 19-06-2022 Through 20-06-2022",
year = "2022",
doi = "10.1109/CVPRW56347.2022.00451",
language = "الإنجليزيّة",
series = "IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops",
publisher = "IEEE Computer Society",
pages = "4059--4068",
booktitle = "Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022",
address = "الولايات المتّحدة",
}