Towards Precise Completion of Deformable Shapes

Oshri Halimi, Ido Imanuel, Or Litany, Giovanni Trappolini, Emanuele Rodolà, Leonidas Guibas, Ron Kimmel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

According to Aristotle, “the whole is greater than the sum of its parts”. This statement was adopted to explain human perception by the Gestalt psychology school of thought in the twentieth century. Here, we claim that when observing a part of an object which was previously acquired as a whole, one could deal with both partial correspondence and shape completion in a holistic manner. More specifically, given the geometry of a full, articulated object in a given pose, as well as a partial scan of the same object in a different pose, we address the new problem of matching the part to the whole while simultaneously reconstructing the new pose from its partial observation. Our approach is data-driven and takes the form of a Siamese autoencoder without the requirement of a consistent vertex labeling at inference time; as such, it can be used on unorganized point clouds as well as on triangle meshes. We demonstrate the practical effectiveness of our model in the applications of single-view deformable shape completion and dense shape correspondence, both on synthetic and real-world geometric data, where we outperform prior work by a large margin.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
PublisherSpringer Science and Business Media Deutschland GmbH
Pages359-377
Number of pages19
ISBN (Print)9783030585853
DOIs
StatePublished - 2020
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: 23 Aug 202028 Aug 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12369 LNCS

Conference

Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom
CityGlasgow
Period23/08/2028/08/20

Keywords

  • 3D deep learning
  • Shape analysis
  • Shape completion

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Towards Precise Completion of Deformable Shapes'. Together they form a unique fingerprint.

Cite this