TY - GEN
T1 - Towards Computational Foreseeability
AU - Kraus, Sarit
AU - Boggess, Kayla
AU - Kim, Robert
AU - Choi, Bryan H.
AU - Feng, Lu
N1 - Publisher Copyright: Copyright © 2025, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2025/4/11
Y1 - 2025/4/11
N2 - This paper addresses the challenges of computational accountability in autonomous systems, particularly in Autonomous Vehicles (AVs), where safety and efficiency often conflict. We begin by examining current approaches such as cost minimization, reward maximization, human-centered approaches, and ethical frameworks, noting their limitations addressing these challenges. Foreseeability is a central concept in tort law that limits the accountability and legal liability of an actor to a reasonable scope. Yet, current data-driven methods to determine foreseeability are rigid, ignore uncertainty, and depend on simulation data. In this work, we advocate for a new computational approach to establish foreseeability of autonomous systems based on the legal “BPL” formula. We provide open research challenges, using fully autonomous vehicles as a motivating example, and call for researchers to help autonomous systems make accountable decisions in safety-critical scenarios.
AB - This paper addresses the challenges of computational accountability in autonomous systems, particularly in Autonomous Vehicles (AVs), where safety and efficiency often conflict. We begin by examining current approaches such as cost minimization, reward maximization, human-centered approaches, and ethical frameworks, noting their limitations addressing these challenges. Foreseeability is a central concept in tort law that limits the accountability and legal liability of an actor to a reasonable scope. Yet, current data-driven methods to determine foreseeability are rigid, ignore uncertainty, and depend on simulation data. In this work, we advocate for a new computational approach to establish foreseeability of autonomous systems based on the legal “BPL” formula. We provide open research challenges, using fully autonomous vehicles as a motivating example, and call for researchers to help autonomous systems make accountable decisions in safety-critical scenarios.
UR - http://www.scopus.com/inward/record.url?scp=105003911602&partnerID=8YFLogxK
U2 - 10.1609/aaai.v39i27.35082
DO - 10.1609/aaai.v39i27.35082
M3 - منشور من مؤتمر
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 28586
EP - 28593
BT - Special Track on AI Alignment
A2 - Walsh, Toby
A2 - Shah, Julie
A2 - Kolter, Zico
T2 - 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Y2 - 25 February 2025 through 4 March 2025
ER -