Abstract
The majority of the research on the quantization of Deep Neural Networks (DNNs) is focused on reducing the precision of tensors visible by high-level frameworks (e.g., weights, activations, and gradients). However, current hardware still relies on high-accuracy core operations. Most significant is the operation of accumulating products. This high-precision accumulation operation is gradually becoming the main computational bottleneck. This is because, so far, the usage of low-precision accumulators led to a significant degradation in performance. In this work, we present a simple method to train and fine-tune high-end DNNs, to allow, for the first time, utilization of cheaper, 12-bits accumulators, with no significant degradation in accuracy. Lastly, we show that as we decrease the accumulation precision further, using fine-grained gradient approximations can improve the DNN accuracy.
Original language | English |
---|---|
State | Published - 2024 |
Externally published | Yes |
Event | 12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Austria Duration: 7 May 2024 → 11 May 2024 |
Conference
Conference | 12th International Conference on Learning Representations, ICLR 2024 |
---|---|
Country/Territory | Austria |
City | Hybrid, Vienna |
Period | 7/05/24 → 11/05/24 |
All Science Journal Classification (ASJC) codes
- Language and Linguistics
- Computer Science Applications
- Education
- Linguistics and Language