Abstract
We study a free fermion model where two sets of non-commuting non-projective measurements stabilize area-law entanglement scaling phases of distinct topological order. We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits. In the presence of unitary dynamics, the two topologically distinct phases are separated by a region with sub-volume scaling of the entanglement entropy. We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy. We further show that the phase diagram is qualitatively captured by an analytically tractable non-Hermitian model obtained via post-selecting the measurement outcome. Finally we introduce a partial-post-selection continuous mapping, that uniquely associates topological indices of the non-Hermitian Hamiltonian to the distinct phases of the stochastic measurement-induced dynamics.
Original language | American English |
---|---|
Article number | 031 |
Journal | SCIPOST PHYSICS |
Volume | 14 |
Issue number | 3 |
DOIs | |
State | Published - 1 Mar 2023 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy