Topological states on the gold surface

Binghai Yan, Benjamin Stadtmüller, Norman Haag, Sebastian Jakobs, Johannes Seidel, Dominik Jungkenn, Stefan Mathias, Mirko Cinchetti, Martin Aeschlimann, Claudia Felser

Research output: Contribution to journalArticlepeer-review

Abstract

Gold surfaces host special electronic states that have been understood as a prototype of Shockley surface states. These surface states are commonly employed to benchmark the capability of angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling spectroscopy. Here we show that these Shockley surface states can be reinterpreted as topologically derived surface states (TDSSs) of a topological insulator (TI), a recently discovered quantum state. Based on band structure calculations, the Z2-type invariants of gold can be well-defined to characterize a TI. Further, our ARPES measurement validates TDSSs by detecting the dispersion of unoccupied surface states. The same TDSSs are also recognized on surfaces of other well-known noble metals (for example, silver, copper, platinum and palladium), which shines a new light on these long-known surface states.

Original languageEnglish
Article number10167
JournalNature Communications
Volume6
DOIs
StatePublished - 2015
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Topological states on the gold surface'. Together they form a unique fingerprint.

Cite this