Topological Multi-Robot Belief Space Planning in Unknown Environments

Andrej Kitanov, Indelman Vadim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper we introduce a novel concept, topological belief space planning (BSP), that uses topological properties of the underlying factor graph representation of future posterior beliefs to direct the search for an optimal solution. This concept deviates from state-of-the-art BSP approaches and is motivated by recent results which indicated, in the context of graph pruning, that topological properties of factor graphs dominantly determine the estimation accuracy. Topological space is also often less dimensional than the embedded state space. In particular, we show how this novel concept can be used in multi-robot belief space planning in high-dimensional state spaces to overcome drawbacks of state-of-the-art approaches: computational intractability of an exhaustive objective evaluation for all candidate path combinations from different robots and dependence on the initial guess in the announced path approach, which can lead to a local minimum of the objective function. We demonstrate our approach in a synthetic simulation.

Original languageEnglish
Title of host publication2018 IEEE International Conference on Robotics and Automation, ICRA 2018
Pages5726-5732
Number of pages7
ISBN (Electronic)9781538630815
DOIs
StatePublished - 10 Sep 2018
Event2018 IEEE International Conference on Robotics and Automation, ICRA 2018 - Brisbane, Australia
Duration: 21 May 201825 May 2018

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation

Conference

Conference2018 IEEE International Conference on Robotics and Automation, ICRA 2018
Country/TerritoryAustralia
CityBrisbane
Period21/05/1825/05/18

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Topological Multi-Robot Belief Space Planning in Unknown Environments'. Together they form a unique fingerprint.

Cite this