Tomography of Turbulence Strength Based on Scintillation Imaging

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Developed areas have plenty of artificial light sources. As the stars, they appear to twinkle, i.e., scintillate. This effect is caused by random turbulence. We leverage this phenomenon in order to reconstruct the spatial distribution of the turbulence strength (TS). Sensing is passive, using a multi-view camera setup in a city scale. The cameras sense the scintillation of light sources in the scene. The scintillation signal has a linear model of a line integral over the field of TS. Thus, the TS is recovered by linear tomography analysis. Scintillation offers measurements and TS recovery, which are more informative than tomography based on angle-of-arrival (projection distortion) statistics. We present the background and theory of the method. Then, we describe a large field experiment to demonstrate this idea, using distributed imagers. As far as we know, this work is the first to propose reconstruction of a TS horizontal field, using passive optical scintillation measurements.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2022 - 17th European Conference, Proceedings
EditorsShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
PublisherSpringer Science and Business Media Deutschland GmbH
Pages470-486
Number of pages17
ISBN (Print)9783031200700
DOIs
StatePublished - 2022
Event17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Duration: 23 Oct 202227 Oct 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13667 LNCS

Conference

Conference17th European Conference on Computer Vision, ECCV 2022
Country/TerritoryIsrael
CityTel Aviv
Period23/10/2227/10/22

Keywords

  • Atmospheric remote sensing
  • Computational photography
  • Multi-view imaging

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Tomography of Turbulence Strength Based on Scintillation Imaging'. Together they form a unique fingerprint.

Cite this