Abstract
The endocytic trafficking pathway is employed by the plant to regulate immune responses, and is often targeted by pathogen effectors to promote virulence. The model system of the tomato receptor-like protein (RLP) LeEIX2 and its ligand, the elicitor EIX, employs endocytosis to transmit receptor-mediated signals, with some of the signaling events occurring directly from endosomal compartments. Here, to explore the trafficking mechanism of LeEIX2-mediated immune signaling, we used a proteomic approach to identify LeEIX2-associating proteins. We report the identification of SlDRP2A, a dynamin related protein, as an associating partner for LeEIX2. SlDRP2A localizes at the plasma membrane. Overexpression of SlDRP2A increases the sub-population of LeEIX2 in VHAa1 endosomes, and enhances LeEIX2- and FLS2-mediated defense. The effect of SlDRP2A on induction of plant immunity highlights the importance of endomembrane components and endocytosis in signal propagation during plant immune responses.
Original language | English |
---|---|
Article number | 936 |
Journal | Frontiers in Plant Science |
Volume | 10 |
DOIs | |
State | Published - 9 Jul 2019 |
Keywords
- DRP2A
- Defense responses
- Dynamin related protein
- EIX
- Endomembrane trafficking
- LeEIX2
- Tomato
All Science Journal Classification (ASJC) codes
- Plant Science