Abstract
We develop a time-dependent second-order Green's function theory (GF2) for calculating neutral excited states in molecules. The equation of motion for the lesser Green's function (GF) is derived within the adiabatic approximation to the Kadanoff-Baym (KB) equation, using the second-order Born approximation for the self-energy. In the linear response regime, we recast the time-dependent KB equation into a Bethe-Salpeter-like equation (GF2-BSE), with a kernel approximated by the second-order Coulomb self-energy. We then apply our GF2-BSE to a set of molecules and atoms and find that GF2-BSE is superior to configuration interaction with singles (CIS) and/or time-dependent Hartree-Fock (TDHF), particularly for charge-transfer excitations, and is comparable to CIS with perturbative doubles (CIS(D)) in most cases.
Original language | English |
---|---|
Pages (from-to) | 5221-5232 |
Number of pages | 12 |
Journal | Journal of Chemical Theory and Computation |
Volume | 18 |
Issue number | 9 |
DOIs | |
State | Published - 13 Sep 2022 |
All Science Journal Classification (ASJC) codes
- Computer Science Applications
- Physical and Theoretical Chemistry