TY - GEN
T1 - Thinking Like Transformers
AU - Weiss, Gail
AU - Goldberg, Yoav
AU - Yahav, Eran
N1 - Publisher Copyright: Copyright © 2021 by the author(s)
PY - 2021
Y1 - 2021
N2 - What is the computational model behind a Transformer? Where recurrent neural networks have direct parallels in finite state machines, allowing clear discussion and thought around architecture variants or trained models, Transformers have no such familiar parallel. In this paper we aim to change that, proposing a computational model for the transformer-encoder in the form of a programming language. We map the basic components of a transformer-encoder-attention and feed-forward computation-into simple primitives, around which we form a programming language: the Restricted Access Sequence Processing Language (RASP). We show how RASP can be used to program solutions to tasks that could conceivably be learned by a Transformer, and how a Transformer can be trained to mimic a RASP solution. In particular, we provide RASP programs for histograms, sorting, and Dyck-languages. We further use our model to relate their difficulty in terms of the number of required layers and attention heads: analyzing a RASP program implies a maximum number of heads and layers necessary to encode a task in a transformer. Finally, we see how insights gained from our abstraction might be used to explain phenomena seen in recent works.
AB - What is the computational model behind a Transformer? Where recurrent neural networks have direct parallels in finite state machines, allowing clear discussion and thought around architecture variants or trained models, Transformers have no such familiar parallel. In this paper we aim to change that, proposing a computational model for the transformer-encoder in the form of a programming language. We map the basic components of a transformer-encoder-attention and feed-forward computation-into simple primitives, around which we form a programming language: the Restricted Access Sequence Processing Language (RASP). We show how RASP can be used to program solutions to tasks that could conceivably be learned by a Transformer, and how a Transformer can be trained to mimic a RASP solution. In particular, we provide RASP programs for histograms, sorting, and Dyck-languages. We further use our model to relate their difficulty in terms of the number of required layers and attention heads: analyzing a RASP program implies a maximum number of heads and layers necessary to encode a task in a transformer. Finally, we see how insights gained from our abstraction might be used to explain phenomena seen in recent works.
UR - http://www.scopus.com/inward/record.url?scp=85161265861&partnerID=8YFLogxK
M3 - منشور من مؤتمر
T3 - Proceedings of Machine Learning Research
SP - 11080
EP - 11090
BT - Proceedings of the 38th International Conference on Machine Learning, ICML 2021
PB - ML Research Press
T2 - 38th International Conference on Machine Learning, ICML 2021
Y2 - 18 July 2021 through 24 July 2021
ER -