Thermo-Hydro-Chemo-Mechanical Formulation for CH4-CO2 Hydrate Conversion Based on Hydrate Formation and Dissociation in Hydrate-Bearing Sediments

Shun Uchida, Christian Deusner, Assaf Klar, Matthias Haeckel

Research output: Contribution to journalConference articlepeer-review


Gas production from gas hydrate-bearing sediments has been attracting global interests because of its potential to meet growing energy demand. Methane (CH4) gas can be extracted from CH4 hydrates by depressurization, thermal stimulation or chemical activation. However, it has never been produced on a commercial scale and the past field trials faced premature termination due to the technical difficulties such as excessive sand flow into the well, a phenomenon known as sand production. One exception is the trial at the Ignik Sikumi, Alaska in 2012, which was conducted by chemical activation followed by depressurization. During the trial, initial sand production ceased after two weeks while CH4 gas production continued for five weeks. The mitigation of sand production is deemed attributed to mechanical or hydraulic effects through formation of CO2-rich gas hydrates. This incident has highlighted the favorable effect of CO2 hydrate formation and needs to incorporate the chemo-processes into existing thermo-hydro-mechanical formulations. This paper presents an analytical formulation to capture the coupled thermo-hydro-chemo-mechanical behavior of gas hydrate-bearing sediments during gas production via CO2 injection. The key features of the formulation include hydrate formation and dissociation, gas dissolution and multiphase flow for both CH4 and CO2, facilitating CH4-CO2 hydrate conversion.

Original languageEnglish
Pages (from-to)235-244
Number of pages10
JournalGeotechnical Special Publication
Issue number270 GSP
StatePublished - 2016
Event2nd Geo-Chicago Conference: Geotechnics for Sustainable Energy, Geo-Chicago 2016 - Chicago, United States
Duration: 14 Aug 201618 Aug 2016

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Architecture
  • Building and Construction
  • Geotechnical Engineering and Engineering Geology


Dive into the research topics of 'Thermo-Hydro-Chemo-Mechanical Formulation for CH4-CO2 Hydrate Conversion Based on Hydrate Formation and Dissociation in Hydrate-Bearing Sediments'. Together they form a unique fingerprint.

Cite this