Abstract
Thermally oxidized iron oxide (α-Fe 2O 3, Hematite) nanostructures are investigated as photoanodes that convert solar energy into hydrogen by splitting water. α-Fe 2O 3 is stable for water photo-oxidation, it has a favorable band gap energy and is a non-toxic common material. However, α-Fe 2O 3 photoanodes suffer from high loss due to electron-hole recombination; therefore nanoarchitectures with high aspect ratio that allows photons to be absorbed close to the photoanode/electrolyte interface are preferred. The thermal oxidation of iron is a simple way to produce nanostructured iron oxide electrodes. Different morphologies, aspect ratios, and oxide thicknesses result depending on the process parameters. Nanorod structures were obtained by annealing iron foils in oxygen rich atmosphere, whereas annealing in oxygen lean atmosphere resulted in nanocoral-like morphology. The nanorod-structured photoanodes achieved moderate photocurrent density of 0.9 mA/cm 2 while the nanocoral morphology achieved 2.6 mA/cm 2 (both at 1.8 V vs. the reversible hydrogen electrode). The effect of the oxidation process and oxide layer on performance is discussed.
Original language | English |
---|---|
Pages (from-to) | 8102-8109 |
Number of pages | 8 |
Journal | International Journal of Hydrogen Energy |
Volume | 37 |
Issue number | 9 |
DOIs | |
State | Published - May 2012 |
Keywords
- Hematite
- Iron oxide
- Nanowires
- Oxidation
- Water splitting
- α-Fe O
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Condensed Matter Physics
- Energy Engineering and Power Technology