Thermal stability of thin Au films deposited on salt whiskers

Ehud Almog, Vadim Derkach, Amit Sharma, Amy Novick-Cohen, Julia R. Greer, Eugen Rabkin

Research output: Contribution to journalArticlepeer-review

Abstract

Thin metal films deposited on patterned or rough substrates play an increasing role in microelectronics, sensing, catalysis, and other areas of nanotechnology. However, the thermal stability and solid state dewetting of thin metal films with complex three-dimensional architecture is still poorly understood. In this work we employed a model system of nanocrystalline Au thin films deposited on prismatic single crystalline KCl whiskers to study the solid state dewetting of thin films in a three-dimensional setting. The arrays of KCl whiskers were grown on porous substrates under well-defined humidity and temperature conditions. Single crystalline prismatic KCl whiskers with a very high aspect ratio, [001] axis and {100} side facets were obtained. The whiskers were coated with thin conformal Au films of 20-30 nm in thickness. The annealing of these core-shell whiskers at the temperature of 350oC resulted in solid state dewetting of the Au film, with the dewetting processes occurring much faster along the whisker edges than on the side facets. The orientation relationships between Au and KCl were determined by employing similarly prepared thin Au films deposited on the flat KCl (100) substrates. Inspired by our experimental results, we developed a numerical model describing the curvature-gradient driven and surface diffusion-controlled growth of a hole in the thin film deposited on a curved substrate. The model predicted the growth of anisotropic elliptical holes elongated along the whisker axis. We discuss the experimental results in terms of the proposed model, indicating the importance of the change in orientation relationship between the Au grains and KCl whisker along the whisker edges.

Original languageEnglish
Article number116537
JournalActa Materialia
Volume205
DOIs
StatePublished - 15 Feb 2021

Keywords

  • Gold thin films
  • diffusion
  • morphology
  • solid state dewetting
  • theory and modeling

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Polymers and Plastics
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Thermal stability of thin Au films deposited on salt whiskers'. Together they form a unique fingerprint.

Cite this