TY - GEN
T1 - The Triejax architecture
T2 - 25th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2020
AU - Kalinsky, Oren
AU - Kimelfeld, Benny
AU - Etsion, Yoav
N1 - Publisher Copyright: © 2020 Association for Computing Machinery.
PY - 2020/3/9
Y1 - 2020/3/9
N2 - Graph pattern matching (e.g., finding all cycles and cliques) has become an important component in domains such as social networks, biology and cyber-security. In recent years, the database community has shown that graph pattern matching problems can be mapped to an efficient new class of relational join algorithms. In this paper, we argue that this new class of join algorithms is highly amenable to specialized hardware acceleration thanks to two fundamental properties: improved memory locality and inherent concurrency. The improved locality is a result of the bound number of intermediate results these algorithms generate, which yields smaller working sets. Coupled with custom caching mechanisms, this property can be used to dramatically reduce the number of main memory accesses invoked by the algorithm. In addition, their inherent concurrency can be leveraged for effective hardware acceleration and hiding memory latency. We demonstrate the hardware amenability of this new class of algorithms by introducing TrieJax, a hardware accelerator for graph pattern matching that can be tightly integrated into existing manycore processors. TrieJax employs custom caching mechanisms and a massively multithreaded design to dramatically accelerate graph pattern matching. We evaluate TrieJax on a set standard graph pattern matching queries and datasets. Our evaluation shows that TrieJax outperforms recently proposed hardware accelerators for graph and database processing that do not employ the new class of algorithms by 7 - 63× on average (up to 539×), while consuming 15 - 179× less energy (up to 1750×), and systems that incorporate modern relational join algorithms by 9 - 20× on average (up to 45×), while consuming 59 - 110× less energy (up to 372×).
AB - Graph pattern matching (e.g., finding all cycles and cliques) has become an important component in domains such as social networks, biology and cyber-security. In recent years, the database community has shown that graph pattern matching problems can be mapped to an efficient new class of relational join algorithms. In this paper, we argue that this new class of join algorithms is highly amenable to specialized hardware acceleration thanks to two fundamental properties: improved memory locality and inherent concurrency. The improved locality is a result of the bound number of intermediate results these algorithms generate, which yields smaller working sets. Coupled with custom caching mechanisms, this property can be used to dramatically reduce the number of main memory accesses invoked by the algorithm. In addition, their inherent concurrency can be leveraged for effective hardware acceleration and hiding memory latency. We demonstrate the hardware amenability of this new class of algorithms by introducing TrieJax, a hardware accelerator for graph pattern matching that can be tightly integrated into existing manycore processors. TrieJax employs custom caching mechanisms and a massively multithreaded design to dramatically accelerate graph pattern matching. We evaluate TrieJax on a set standard graph pattern matching queries and datasets. Our evaluation shows that TrieJax outperforms recently proposed hardware accelerators for graph and database processing that do not employ the new class of algorithms by 7 - 63× on average (up to 539×), while consuming 15 - 179× less energy (up to 1750×), and systems that incorporate modern relational join algorithms by 9 - 20× on average (up to 45×), while consuming 59 - 110× less energy (up to 372×).
KW - Algorithmic design
KW - Databases
KW - Graph analytics
KW - Hardware
KW - Hardware acceleration
KW - Relational join
UR - http://www.scopus.com/inward/record.url?scp=85082398464&partnerID=8YFLogxK
U2 - 10.1145/3373376.3378524
DO - 10.1145/3373376.3378524
M3 - منشور من مؤتمر
T3 - International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS
SP - 1217
EP - 1231
BT - ASPLOS 2020 - 25th International Conference on Architectural Support for Programming Languages and Operating Systems
Y2 - 16 March 2020 through 20 March 2020
ER -