TY - JOUR
T1 - The spread of interferon-γ in melanomas is highly spatially confined, driving nongenetic variability in tumor cells
AU - Centofanti, Edoardo
AU - Wang, Chad
AU - Iyer, Sandhya
AU - Krichevsky, Oleg
AU - Oyler-Yaniv, Alon
AU - Oyler-Yaniv, Jennifer
N1 - Publisher Copyright: © 2023 the Author(s).
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Interferon-γ (IFNγ) is a critical antitumor cytokine that has varied effects on different cell types. The global effect of IFNγ in the tumor depends on which cells it acts upon and the spatial extent of its spread. Reported measurements of IFNγ spread vary dramatically in different contexts, ranging from nearest-neighbor signaling to perfusion throughout the entire tumor. Here, we apply theoretical considerations to experiments both in vitro and in vivo to study the spread of IFNγ in melanomas. We observe spatially confined niches of IFNγ signaling in 3-D mouse melanoma cultures and human tumors that generate cellular heterogeneity in gene expression and alter the susceptibility of affected cells to T cell killing. Widespread IFNγ signaling only occurs when niches overlap due to high local densities of IFNγ-producing T cells. We measured length scales of ∼30 to 40 μm for IFNγ spread in B16 mouse melanoma cultures and human primary cutaneous melanoma. Our results are consistent with IFNγ spread being governed by a simple diffusion-consumption model and offer insight into how the spatial organization of T cells contributes to intratumor heterogeneity in inflammatory signaling, gene expression, and immune-mediated clearance. Solid tumors are often viewed as collections of diverse cellular "neighborhoods": Our work provides a general explanation for such nongenetic cellular variability due to confinement in the spread of immune mediators.
AB - Interferon-γ (IFNγ) is a critical antitumor cytokine that has varied effects on different cell types. The global effect of IFNγ in the tumor depends on which cells it acts upon and the spatial extent of its spread. Reported measurements of IFNγ spread vary dramatically in different contexts, ranging from nearest-neighbor signaling to perfusion throughout the entire tumor. Here, we apply theoretical considerations to experiments both in vitro and in vivo to study the spread of IFNγ in melanomas. We observe spatially confined niches of IFNγ signaling in 3-D mouse melanoma cultures and human tumors that generate cellular heterogeneity in gene expression and alter the susceptibility of affected cells to T cell killing. Widespread IFNγ signaling only occurs when niches overlap due to high local densities of IFNγ-producing T cells. We measured length scales of ∼30 to 40 μm for IFNγ spread in B16 mouse melanoma cultures and human primary cutaneous melanoma. Our results are consistent with IFNγ spread being governed by a simple diffusion-consumption model and offer insight into how the spatial organization of T cells contributes to intratumor heterogeneity in inflammatory signaling, gene expression, and immune-mediated clearance. Solid tumors are often viewed as collections of diverse cellular "neighborhoods": Our work provides a general explanation for such nongenetic cellular variability due to confinement in the spread of immune mediators.
KW - cytokine signaling
KW - interferon-γ
KW - melanoma
KW - quantitative biology
KW - tumor-infiltrating lymphocytes
UR - http://www.scopus.com/inward/record.url?scp=85168437480&partnerID=8YFLogxK
U2 - https://doi.org/10.1073/pnas.2304190120
DO - https://doi.org/10.1073/pnas.2304190120
M3 - Article
C2 - 37603742
SN - 0027-8424
VL - 120
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 35
M1 - e2304190120
ER -