Abstract
The small GTPase Cdc42 plays a central role in various processes in eukaryotic cells including growth, differentiation and cytoskeleton organization. Whereas it is essential in the yeast Saccharomyces cerevisiae, its role in filamentous fungi differs, due to the complementing, partly overlapping function of Rac. We analyzed the role of the Cdc42 homologue in the necrotrophic, broad host range pathogen Botrytis cinerea. Deletion mutants of bccdc42 showed various growth abnormalities; the mutants had reduced growth rate and hyphal branching, they produced fewer conidia, which were enlarged and misshapen and had germination defects. Additionally, the mutants were impaired in sclerotia development. Cytological studies indicate that at least part of this phenotype could be attributed to disturbed control of nuclear division: conidia and hyphae of the mutant showed twofold higher nucleus/cytoplasm ratio compared to wild type cells. Apart from these effects on vegetative growth and differentiation, Δbccdc42 strains were attenuated in penetration and colonization of host tissue, confirming that BcCdc42 - though being not essential like in yeast - is involved in important developmental processes in B. cinerea.
Original language | English |
---|---|
Pages (from-to) | 1012-1019 |
Number of pages | 8 |
Journal | Fungal Genetics and Biology |
Volume | 48 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2011 |
Keywords
- Cell cycle
- G-proteins
- Host-pathogen-interaction
- Pathogenic fungi
All Science Journal Classification (ASJC) codes
- Microbiology
- Genetics