THE SHAPE OF DATA: INTRINSIC DISTANCE FOR DATA DISTRIBUTIONS

Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Alex Bronstein, Ivan Oseledets, Emmanuel Müller

Research output: Contribution to conferencePaperpeer-review

Abstract

The ability to represent and compare machine learning models is crucial in order to quantify subtle model changes, evaluate generative models, and gather insights on neural network architectures. Existing techniques for comparing data distributions focus on global data properties such as mean and covariance; in that sense, they are extrinsic and uni-scale. We develop a first-of-its-kind intrinsic and multi-scale method for characterizing and comparing data manifolds, using a lower-bound of the spectral Gromov-Wasserstein inter-manifold distance, which compares all data moments. In a thorough experimental study, we demonstrate that our method effectively discerns the structure of data manifolds even on unaligned data of different dimensionality, and showcase its efficacy in evaluating the quality of generative models.

Original languageEnglish
StatePublished - 2020
Externally publishedYes
Event8th International Conference on Learning Representations, ICLR 2020 - Addis Ababa, Ethiopia
Duration: 30 Apr 2020 → …

Conference

Conference8th International Conference on Learning Representations, ICLR 2020
Country/TerritoryEthiopia
CityAddis Ababa
Period30/04/20 → …

All Science Journal Classification (ASJC) codes

  • Education
  • Linguistics and Language
  • Language and Linguistics
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'THE SHAPE OF DATA: INTRINSIC DISTANCE FOR DATA DISTRIBUTIONS'. Together they form a unique fingerprint.

Cite this