TY - GEN
T1 - The Round Complexity of Statistical MPC with Optimal Resiliency
AU - Applebaum, Benny
AU - Kachlon, Eliran
AU - Patra, Arpita
N1 - Publisher Copyright: © 2023 Owner/Author.
PY - 2023/6/2
Y1 - 2023/6/2
N2 - In STOC 1989, Rabin and Ben-Or (RB) established an important milestone in the fields of cryptography and distributed computing by showing that every functionality can be computed with statistical (information-theoretic) security in the presence of an active (aka Byzantine) rushing adversary that controls up to half of the parties. We study the round complexity of general secure multiparty computation and several related tasks in the RB model. Our main result shows that every functionality can be realized in only four rounds of interaction which is known to be optimal. This completely settles the round complexity of statistical actively-secure optimally-resilient MPC, resolving a long line of research. Along the way, we construct the first round-optimal statistically-secure verifiable secret sharing protocol (Chor, Goldwasser, Micali, and Awerbuch; STOC 1985), show that every single-input functionality (e.g., multi-verifier zero-knowledge) can be realized in 3 rounds, and prove that the latter bound is optimal. The complexity of all our protocols is exponential in the number of parties, and the question of deriving polynomially-efficient protocols is left for future research. Our main technical contribution is a construction of a new type of statistically-secure signature scheme whose existence was open even for smaller resiliency thresholds. We also describe a new statistical compiler that lifts up passively-secure protocols to actively-secure protocols in a round-efficient way via the aid of protocols for single-input functionalities. This compiler can be viewed as a statistical variant of the GMW compiler (Goldreich, Micali, Wigderson; STOC, 1987) that originally employed zero-knowledge proofs and public-key encryption.
AB - In STOC 1989, Rabin and Ben-Or (RB) established an important milestone in the fields of cryptography and distributed computing by showing that every functionality can be computed with statistical (information-theoretic) security in the presence of an active (aka Byzantine) rushing adversary that controls up to half of the parties. We study the round complexity of general secure multiparty computation and several related tasks in the RB model. Our main result shows that every functionality can be realized in only four rounds of interaction which is known to be optimal. This completely settles the round complexity of statistical actively-secure optimally-resilient MPC, resolving a long line of research. Along the way, we construct the first round-optimal statistically-secure verifiable secret sharing protocol (Chor, Goldwasser, Micali, and Awerbuch; STOC 1985), show that every single-input functionality (e.g., multi-verifier zero-knowledge) can be realized in 3 rounds, and prove that the latter bound is optimal. The complexity of all our protocols is exponential in the number of parties, and the question of deriving polynomially-efficient protocols is left for future research. Our main technical contribution is a construction of a new type of statistically-secure signature scheme whose existence was open even for smaller resiliency thresholds. We also describe a new statistical compiler that lifts up passively-secure protocols to actively-secure protocols in a round-efficient way via the aid of protocols for single-input functionalities. This compiler can be viewed as a statistical variant of the GMW compiler (Goldreich, Micali, Wigderson; STOC, 1987) that originally employed zero-knowledge proofs and public-key encryption.
KW - Cryptographic protocols
KW - Information-Theoretic Cryptography
KW - Round Complexity
KW - Verifiable Secret Sharing
UR - http://www.scopus.com/inward/record.url?scp=85163072434&partnerID=8YFLogxK
U2 - https://doi.org/10.1145/3564246.3585228
DO - https://doi.org/10.1145/3564246.3585228
M3 - منشور من مؤتمر
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 1527
EP - 1536
BT - STOC 2023 - Proceedings of the 55th Annual ACM Symposium on Theory of Computing
A2 - Saha, Barna
A2 - Servedio, Rocco A.
PB - Association for Computing Machinery
T2 - 55th Annual ACM Symposium on Theory of Computing, STOC 2023
Y2 - 20 June 2023 through 23 June 2023
ER -