TY - JOUR
T1 - The Role of Plasma Membrane Aquaporins in Regulating the Bundle Sheath-Mesophyll Continuum and Leaf Hydraulics
AU - Sade, Nir
AU - Shatil-Cohen, Arava
AU - Attia, Ziv
AU - Maurel, Christophe
AU - Boursiac, Yann
AU - Kelly, Gilor
AU - Granot, David
AU - Yaaran, Adi
AU - Lerner, Stephen
AU - Moshelion, Menachem
N1 - Publisher Copyright: © 2014 American Society of Plant Biologists. All rights reserved.
PY - 2014/11/1
Y1 - 2014/11/1
N2 - Our understanding of the cellular role of aquaporins (AQPs) in the regulation of whole-plant hydraulics, in general, and extravascular, radial hydraulic conductance in leaves (Kleaf), in particular, is still fairly limited. We hypothesized that the AQPs of the vascular bundle sheath (BS) cells regulate Kleaf. To examine this hypothesis, AQP genes were silenced using artificial microRNAs that were expressed constitutively or specifically targeted to the BS. MicroRNA sequences were designed to target all five AQP genes from the PLASMA MEMBRANE-INTRINSIC PROTEIN1 (PIP1) subfamily. Our results show that the constitutively silenced PIP1 (35S promoter) plants had decreased PIP1 transcript and protein levels and decreased mesophyll and BS osmotic water permeability (Pf),mesophyll conductance of CO2, photosynthesis, Kleaf, transpiration, and shoot biomass. Plants in which the PIP1 subfamily was silenced only in the BS (SCARECROW:microRNA plants) exhibited decreased mesophyll and BS Pf and decreased Kleafbut no decreases in the rest of the parameters listed above, with the net result of increased shoot biomass. We excluded the possibility of SCARECROW promoter activity in the mesophyll. Hence, the fact that SCARECROW:microRNA mesophyll exhibited reduced Pf, but not reduced mesophyll conductance of CO2, suggests that the BS-mesophyll hydraulic continuum acts as a feed-forward control signal. The role of AQPs in the hierarchy of the hydraulic signal pathway controlling leaf water status under normal and limited-water conditions is discussed.
AB - Our understanding of the cellular role of aquaporins (AQPs) in the regulation of whole-plant hydraulics, in general, and extravascular, radial hydraulic conductance in leaves (Kleaf), in particular, is still fairly limited. We hypothesized that the AQPs of the vascular bundle sheath (BS) cells regulate Kleaf. To examine this hypothesis, AQP genes were silenced using artificial microRNAs that were expressed constitutively or specifically targeted to the BS. MicroRNA sequences were designed to target all five AQP genes from the PLASMA MEMBRANE-INTRINSIC PROTEIN1 (PIP1) subfamily. Our results show that the constitutively silenced PIP1 (35S promoter) plants had decreased PIP1 transcript and protein levels and decreased mesophyll and BS osmotic water permeability (Pf),mesophyll conductance of CO2, photosynthesis, Kleaf, transpiration, and shoot biomass. Plants in which the PIP1 subfamily was silenced only in the BS (SCARECROW:microRNA plants) exhibited decreased mesophyll and BS Pf and decreased Kleafbut no decreases in the rest of the parameters listed above, with the net result of increased shoot biomass. We excluded the possibility of SCARECROW promoter activity in the mesophyll. Hence, the fact that SCARECROW:microRNA mesophyll exhibited reduced Pf, but not reduced mesophyll conductance of CO2, suggests that the BS-mesophyll hydraulic continuum acts as a feed-forward control signal. The role of AQPs in the hierarchy of the hydraulic signal pathway controlling leaf water status under normal and limited-water conditions is discussed.
UR - http://www.scopus.com/inward/record.url?scp=84908582551&partnerID=8YFLogxK
U2 - https://doi.org/10.1104/pp.114.248633
DO - https://doi.org/10.1104/pp.114.248633
M3 - مقالة
C2 - 25266632
SN - 0032-0889
VL - 166
SP - 1609
EP - 1620
JO - Plant Physiology
JF - Plant Physiology
IS - 3
ER -