Abstract
I review studies of core collapse supernovae (CCSNe) and similar transient events that attribute major roles to jets in powering most CCSNe and in shaping their ejecta. I start with reviewing the jittering jets explosion mechanism that I take to power most CCSN explosions. Neutrino heating does play a role in boosting the jets. I compare the morphologies of some CCSN remnants to planetary nebulae to conclude that jets and instabilities are behind the shaping of their ejecta. I then discuss CCSNe that are descendants of rapidly rotating collapsing cores that result in fixed-axis jets (with small jittering) that shape bipolar ejecta. A large fraction of the bipolar CCSNe are superluminous supernovae (SLSNe). I conclude that modeling of SLSN light curves and bumps in the light curves must include jets, even when considering energetic magnetars and/or ejecta interaction with the circumstellar matter (CSM). I connect the properties of bipolar CCSNe to common envelope jets supernovae (CEJSNe) where an old neutron star or a black hole spirals-in inside the envelope and then inside the core of a red supergiant. I discuss how jets can shape the pre-explosion CSM, as in Supernova 1987A, and can power pre-explosion outbursts (precursors) in binary system progenitors of CCSNe and CEJSNe. Binary interaction also facilitates the launching of post-explosion jets.
| Original language | English |
|---|---|
| Article number | 122003 |
| Journal | Research in Astronomy and Astrophysics |
| Volume | 22 |
| Issue number | 12 |
| DOIs | |
| State | Published - Dec 2022 |
Keywords
- (stars:) binaries: general
- (stars:) supernovae: general
- ISM: jets and outflows
- ISM: supernova remnants
- stars: jets
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science