The role of baroclinic activity in controlling Earth’s albedo in the present and future climates

Or Hadas, George Datseris, Joaquin Blanco, Sandrine Bony, Rodrigo Caballero, Bjorn Stevens, Yohai Kaspi

Research output: Contribution to journalArticlepeer-review


Clouds are one of the most influential components of Earth’s climate system. Specifically, the midlatitude clouds play a vital role in shaping Earth’s albedo. This study investigates the connection between baroclinic activity, which dominates the midlatitude climate, and cloud-albedo and how it relates to Earth’s existing hemispheric albedo symmetry. We show that baroclinic activity and cloud-albedo are highly correlated. By using Lagrangian tracking of cyclones and anticyclones and analyzing their individual cloud properties at different vertical levels, we explain why their cloud-albedo increases monotonically with intensity. We find that while for anticyclones, the relation between strength and cloudiness is mostly linear, for cyclones, in which clouds are more prevalent, the relation saturates with strength. Using the cloud-albedo strength relationships and the climatology of baroclinic activity, we demonstrate that the observed hemispheric difference in cloud-albedo is well explained by the difference in the population of cyclones and anticyclones, which counter-balances the difference in clear-sky albedo. Finally, we discuss the robustness of the hemispheric albedo symmetry in the future climate. Seemingly, the symmetry should break, as the northern hemisphere’s storm track response differs from that of the southern hemisphere due to Arctic amplification. However, we show that the saturation of the cloud response to storm intensity implies that the increase in the skewness of the southern hemisphere storm distribution toward strong storms will decrease future cloud-albedo in the southern hemisphere. This complex response explains how albedo symmetry might persist even with the predicted asymmetric hemispheric change in baroclinicity under climate change.
Original languageEnglish
Article numbere2208778120
Number of pages7
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number5
StatePublished - 31 Jan 2023

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'The role of baroclinic activity in controlling Earth’s albedo in the present and future climates'. Together they form a unique fingerprint.

Cite this