Abstract
In a blind adaptive deconvolution problem, the convolutional noise observed at the output of the deconvolution process, in addition to the required source signal, is—according to the literature—assumed to be a Gaussian process when the deconvolution process (the blind adaptive equalizer) is deep in its convergence state. Namely, when the convolutional noise sequence or, equivalently, the residual inter-symbol interference (ISI) is considered small. Up to now, no closed-form approximated expression is given for the residual ISI, where the Gaussian model can be used to describe the convolutional noise probability density function (pdf). In this paper, we use the Maximum Entropy density technique, Lagrange’s Integral method, and quasi-moment truncation technique to obtain an approximated closed-form equation for the residual ISI where the Gaussian model can be used to approximately describe the convolutional noise pdf. We will show, based on this approximated closed-form equation for the residual ISI, that the Gaussian model can be used to approximately describe the convolutional noise pdf just before the equalizer has converged, even at a residual ISI level where the “eye diagram” is still very closed, namely, where the residual ISI can not be considered as small.
Original language | English |
---|---|
Article number | 989 |
Journal | Entropy |
Volume | 24 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2022 |
Keywords
- blind adaptive deconvolution
- Lagrange multipliers
- Laplace’s integral method
- MET
- moment truncation technique
- residual ISI
All Science Journal Classification (ASJC) codes
- Information Systems
- Mathematical Physics
- Physics and Astronomy (miscellaneous)
- Electrical and Electronic Engineering