## Abstract

In this article we provide a tight bound for the price of preemption for scheduling jobs on a single machine (or multiple machines). The input consists of a set of jobs to be scheduled and of an integer parameter k ≥ 1. Each job has a release time, deadline, length (also called processing time), and value associated with it. The goal is to feasibly schedule a subset of the jobs so that their total value is maximal; while preemption of a job is permitted, a job may be preempted no more than k times. The price of preemption is the worst possible (i.e., largest) ratio of the optimal non-bounded-preemptive scheduling to the optimal k-bounded-preemptive scheduling. Our results show that allowing at most k preemptions suffices to guarantee a Θ(min {logk+1 n, logk+1P}) fraction of the total value achieved when the number of preemptions is unrestricted (where n is the number of the jobs and P the ratio of the maximal length to the minimal length), giving us an upper bound for the price; a specific scenario serves to prove the tightness of this bound. We further show that when no preemptions are permitted at all (i.e., k=0), the price is Θ (min {n, log P}). As part of the proof, we introduce the notion of the Bounded-Degree Ancestor-Free Sub-Forest (BAS). We investigate the problem of computing the maximal-value BAS of a given forest and give a tight bound for the loss factor, which is Θ(logk+1 n) as well, where n is the size of the original forest and k is the bound on the degree of the sub-forest.

Original language | English |
---|---|

Article number | 3434377 |

Journal | ACM Transactions on Parallel Computing |

Volume | 8 |

Issue number | 1 |

DOIs | |

State | Published - Apr 2021 |

## Keywords

- Scheduling jobs
- bounded preemptions
- bounded-degree sub-forest
- multiple machines

## All Science Journal Classification (ASJC) codes

- Software
- Modelling and Simulation
- Hardware and Architecture
- Computer Science Applications
- Computational Theory and Mathematics