Abstract
The poleward propagation of midlatitude storms is studied using a potential vorticity (PV) tendency analysis of cyclone-tracking composites, in an idealized zonally symmetric moist GCM. A detailed PV budget reveals the important role of the upper-level PV and diabatic heating associated with latent heat release. During the growth stage, the classic picture of baroclinic instability emerges, with an upper-level PV to the west of a low-level PV associated with the cyclone. This configuration not only promotes intensification, but also a poleward tendency that results from the nonlinear advection of the low-level anomaly by the upper-level PV. The separate contributions of the upper- and lower-level PV as well as the surface temperature anomaly are analyzed using a piecewise PV inversion, which shows the importance of the upper-level PV anomaly in advecting the cyclone poleward. The PV analysis also emphasizes the crucial role played by latent heat release in the poleward motion of the cyclone. The latent heat release tends to maximize on the northeastern side of cyclones, where the warm and moist air ascends. A positive PV tendency results at lower levels, propagating the anomaly eastward and poleward. It is also shown here that stronger cyclones have stronger latent heat release and poleward advection, hence, larger poleward propagation. Time development of the cyclone composites shows that the poleward propagation increases during the growth stage of the cyclone, as both processes intensify. However, during the decay stage, the vertical alignment of the upper and lower PV anomalies implies that these processes no longer contribute to a poleward tendency.
Original language | English |
---|---|
Pages (from-to) | 1687-1707 |
Number of pages | 21 |
Journal | Journal of the Atmospheric Sciences |
Volume | 73 |
Issue number | 4 |
DOIs | |
State | Published - 1 Apr 2016 |
Keywords
- Atm/ocean structure/ phenomena
- Extratropical cyclones
- Physical meteorology and climatology
- Potential vorticity
- Storm tracks
All Science Journal Classification (ASJC) codes
- Atmospheric Science