Abstract
The classical result of Erdos and Rényi asserts that the random graph G(n,p) experiences sharp phase transition around \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1}{n}\end{align*} \end{document} - for any ε > 0 and \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1-\epsilon}{n}\end{align*} \end{document}, all connected components of G(n,p) are typically of size Oε(log n), while for \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1+\epsilon}{n}\end{align*} \end{document}, with high probability there exists a connected component of size linear in n. We provide a very simple proof of this fundamental result; in fact, we prove that in the supercritical regime \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1+\epsilon}{n}\end{align*} \end{document}, the random graph G(n,p) contains typically a path of linear length. We also discuss applications of our technique to other random graph models and to positional games.
Original language | English |
---|---|
Pages (from-to) | 131-138 |
Number of pages | 8 |
Journal | Random Structures and Algorithms |
Volume | 43 |
Issue number | 2 |
DOIs | |
State | Published - Sep 2013 |
Keywords
- Giant component
- Long paths
- Phase transition
- Random graphs
All Science Journal Classification (ASJC) codes
- Software
- General Mathematics
- Computer Graphics and Computer-Aided Design
- Applied Mathematics