The jacobi MIMO channel

Ronen Dar, Meir Feder, Mark Shtaif

Research output: Contribution to journalArticlepeer-review

Abstract

This paper presents a new fading model for multi-input multi-output channels: the Jacobi fading model. It asserts that , the transfer matrix which couples the inputs into outputs, is a submatrix of an random (Haar-distributed) unitary matrix. The (squared) singular values of follow the law of the classical Jacobi ensemble of random matrices, hence the name of the channel. One motivation to define such a channel comes from multimode/multicore optical fiber communication. It turns out that this model can be qualitatively different from the Rayleigh model, leading to interesting practical and theoretical results. This paper first evaluates the ergodic capacity of the channel. Then, it considers the nonergodic case, where it analyzes the outage probability and the diversity-multiplexing tradeoff. In the case where , it is shown that at least degrees of freedom are guaranteed not to fade for any channel realization, enabling a zero-outage probability or infinite diversity order at the corresponding rates. A simple scheme utilizing (a possibly outdated) channel state feedback is provided, attaining the no-outage guarantee. Finally, noting that as increases, the Jacobi model approaches the Rayleigh model, the paper discusses the applicability of the model in other communication scenarios.

Original languageEnglish
Article number6380619
Pages (from-to)2426-2441
Number of pages16
JournalIEEE Transactions on Information Theory
Volume59
Issue number4
DOIs
StatePublished - Apr 2013

Keywords

  • Diversity-multiplexing tradeoff
  • Ergodic capacity
  • Fading model
  • Jacobi channel
  • MIMO channel
  • Optical fiber communication
  • Outage probability
  • Rayleigh fading
  • Space-divisionmultiplexing

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Computer Science Applications
  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'The jacobi MIMO channel'. Together they form a unique fingerprint.

Cite this