TY - JOUR
T1 - The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes
AU - Appelman, Taly P.
AU - Mizrahi, Joseph
AU - Elisseeff, Jennifer H.
AU - Seliktar, Dror
N1 - Funding Information: The authors gratefully acknowledge the financial support of the United States–Israel Binational Science Foundation (grant no. 2003184 and 2007366 ), the joint Johns Hopkins University-Technion Program for Biomedical Sciences and Biomedical Engineering and the Russell Berrie Nanotechnology Institute - Technion .
PY - 2011/2
Y1 - 2011/2
N2 - Primary bovine chondrocytes and PEG-based hydrogels were used to investigate the effects of scaffold composition and architecture on the cellular response to large dynamic compressive strain stimulation. Proteins and proteoglycans were conjugated to functionalized poly(ethylene glycol) (PEG) and immobilized in PEG hydrogels to create bio-synthetic scaffolds. Second passage articular chondrocytes were encapsulated into four different scaffold compositions: PEG-Proteoglycan (PP), PEG-Fibrinogen (PF), PEG-Albumin (PA), and PEG only and subjected to 15% dynamic compressive strain at 1-Hz frequency. Cellular response was evaluated in terms of cell number, glycosaminoglycans (GAGs), collagen type II and collagen type I accumulation in the constructs following 24. h and 28 days of stimulated and static culture. Stimulation of the constructs resulted in an increase in the cell number in all scaffolds, with no statistical difference measured among them. Dynamic stimulation of PP, PF, PA and PEG constructs resulted in a respective increase in the GAGs by 33%, 53.4%, 240.5%, and 284.5%, compared to their static controls. The permissive PEG and PA scaffolds showed a significantly larger relative increase in the GAGs in comparison to the other scaffolds tested. Collagen type II content in the PF, PA and PEG constructs increased by 78%, 1266% and 896% respectively, compared to their static controls. Permissive constructs showed a significantly larger relative increase and final absolute values of GAGs and type II collagen, compared to the PF constructs. Immunostaining for collagen type I, an indicator for chondrocyte de-differentiation, indicated that stimulation inhibited its production. Correlation maps between scaffold properties highlighted the major differences between permissive and instructive scaffolds. These results support the hypothesis that both compressive strain and scaffold bioactivity have an important effect on the chondrocyte metabolic response to mechanical stimulation, and that the 3-D environment surrounding chondrocytes can actively participate in translating mechanical stimulation to the resident cells.
AB - Primary bovine chondrocytes and PEG-based hydrogels were used to investigate the effects of scaffold composition and architecture on the cellular response to large dynamic compressive strain stimulation. Proteins and proteoglycans were conjugated to functionalized poly(ethylene glycol) (PEG) and immobilized in PEG hydrogels to create bio-synthetic scaffolds. Second passage articular chondrocytes were encapsulated into four different scaffold compositions: PEG-Proteoglycan (PP), PEG-Fibrinogen (PF), PEG-Albumin (PA), and PEG only and subjected to 15% dynamic compressive strain at 1-Hz frequency. Cellular response was evaluated in terms of cell number, glycosaminoglycans (GAGs), collagen type II and collagen type I accumulation in the constructs following 24. h and 28 days of stimulated and static culture. Stimulation of the constructs resulted in an increase in the cell number in all scaffolds, with no statistical difference measured among them. Dynamic stimulation of PP, PF, PA and PEG constructs resulted in a respective increase in the GAGs by 33%, 53.4%, 240.5%, and 284.5%, compared to their static controls. The permissive PEG and PA scaffolds showed a significantly larger relative increase in the GAGs in comparison to the other scaffolds tested. Collagen type II content in the PF, PA and PEG constructs increased by 78%, 1266% and 896% respectively, compared to their static controls. Permissive constructs showed a significantly larger relative increase and final absolute values of GAGs and type II collagen, compared to the PF constructs. Immunostaining for collagen type I, an indicator for chondrocyte de-differentiation, indicated that stimulation inhibited its production. Correlation maps between scaffold properties highlighted the major differences between permissive and instructive scaffolds. These results support the hypothesis that both compressive strain and scaffold bioactivity have an important effect on the chondrocyte metabolic response to mechanical stimulation, and that the 3-D environment surrounding chondrocytes can actively participate in translating mechanical stimulation to the resident cells.
KW - Bioreactor
KW - Cartilage tissue engineering
KW - Hydrogel
KW - Mechanotransduction
KW - Poly(ethylene glycol)
UR - http://www.scopus.com/inward/record.url?scp=78650265709&partnerID=8YFLogxK
U2 - https://doi.org/10.1016/j.biomaterials.2010.10.017
DO - https://doi.org/10.1016/j.biomaterials.2010.10.017
M3 - مقالة
SN - 0142-9612
VL - 32
SP - 1508
EP - 1516
JO - Biomaterials
JF - Biomaterials
IS - 6
ER -