The homeostasis of β-alanine is key for Arabidopsis reproductive growth and development

Si Wu, Youjun Zhang, Urszula Luzarowska, Lei Yang, Mohamed A. Salem, Venkatesh P. Thirumalaikumar, Nir Sade, Vadim E. Galperin, Alisdair Fernie, Arun Sampathkumar, Shimon Bershtein, Corina M. Fusari, Yariv Brotman

Research output: Contribution to journalArticlepeer-review

Abstract

β-Alanine, an abundant non-proteinogenic amino acid, acts as a precursor for coenzyme A and plays a role in various stress responses. However, a comprehensive understanding of its metabolism in plants remains incomplete. Previous metabolic genome-wide association studies (mGWAS) identified ALANINE:GLYOXYLATE AMINOTRANSFERASE2 (AGT2, AT4G39660) linked to β-alanine levels in Arabidopsis under normal conditions. In this study, we aimed to deepen our insights into β-alanine regulation by conducting mGWAS under two contrasting environmental conditions: control (12 h photoperiod, 21°C, 150 μmol m−2 sec−1) and stress (harvested after 1820 min at 32°C and darkness). We identified two highly significant quantitative trait loci (QTL) for β-alanine, including the AGT2 locus associated in both environments and ALDEHYDE DEHYDROGENASE6B2 (ALDH6B2, AT2G14170) associated only under stress conditions. A coexpression-correlation network revealed that the regulatory pathway involving β-alanine levels, AGT2, and ALDH6B2 connects the branched chained amino acid (BCAA) degradation through the propionate pathway. Metabolic profiles of AGT2 overexpression (OE) and knock-out (KO) lines (agt2) across various organs and developmental stages established the critical role of AGT2 in β-alanine metabolism. This work underscores the importance of β-alanine homeostasis for proper growth and development in Arabidopsis.

Original languageEnglish
Article numbere70134
JournalPlant Journal
Volume122
Issue number1
DOIs
StatePublished - 1 Apr 2025

Keywords

  • AGT2
  • ALDH6B2
  • metabolic genome-wide association studies
  • metabolic regulation
  • plant development
  • seed abortion
  • yield traits
  • β-alanine

All Science Journal Classification (ASJC) codes

  • Genetics
  • Plant Science
  • Cell Biology

Fingerprint

Dive into the research topics of 'The homeostasis of β-alanine is key for Arabidopsis reproductive growth and development'. Together they form a unique fingerprint.

Cite this