The Geometry of Robust Value Functions

Kaixin Wang, Navdeep Kumar, Kuangqi Zhou, Bryan Hooi, Jiashi Feng, Shie Mannor

Research output: Contribution to journalConference articlepeer-review

Abstract

The space of value functions is a fundamental concept in reinforcement learning. Characterizing its geometric properties may provide insights for optimization and representation. Existing works mainly focus on the value space for Markov Decision Processes (MDPs). In this paper, we study the geometry of the robust value space for the more general Robust MDPs (RMDPs) setting, where transition uncertainties are considered. Specifically, since we find it hard to directly adapt prior approaches to RMDPs, we start with revisiting the non-robust case, and introduce a new perspective that enables us to characterize both the non-robust and robust value space in a similar fashion. The key of this perspective is to decompose the value space, in a state-wise manner, into unions of hypersurfaces. Through our analysis, we show that the robust value space is determined by a set of conic hypersurfaces, each of which contains the robust values of all policies that agree on one state. Furthermore, we find that taking only extreme points in the uncertainty set is sufficient to determine the robust value space. Finally, we discuss some other aspects about the robust value space, including its non-convexity and policy agreement on multiple states.

Original languageEnglish
Pages (from-to)22727-22751
Number of pages25
JournalProceedings of Machine Learning Research
Volume162
StatePublished - 2022
Event39th International Conference on Machine Learning, ICML 2022 - Baltimore, United States
Duration: 17 Jul 202223 Jul 2022
https://proceedings.mlr.press/v162/

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'The Geometry of Robust Value Functions'. Together they form a unique fingerprint.

Cite this