The Error Probability of Maximum-Likelihood Decoding over Two Deletion/Insertion Channels

Omer Sabary, Eitan Yaakobi, Alexander Yucovich

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper studies the problem of reconstructing a word given several of its noisy copies. This setup is motivated by several applications, among them is reconstructing strands in DNA-based storage systems. Under this paradigm, a word is transmitted over some fixed number of identical independent channels and the goal of the decoder is to output the transmitted word or some close approximation. The main focus of this paper is the case of two deletion channels and studying the error probability of the maximum-likelihood (ML) decoder under this setup. First, it is discussed how the ML decoder operates. Then, we observe that the dominant error patterns are deletions in the same run or errors resulting from alternating sequences. Based on these observations, it is derived that the error probability of the ML decoder is roughly \frac{{3q - 1}}{{q - 1}}{p^2}, when the transmitted word is any q-ary sequence and p is the channel's deletion probability. We also study the cases when the transmitted word belongs to the Varshamov Tenengolts (VT) code or the shifted VT code. Lastly, the insertion channel is studied as well. These theoretical results are verified by corresponding simulations.

Original languageEnglish
Title of host publication2020 IEEE International Symposium on Information Theory, ISIT 2020 - Proceedings
Pages763-768
Number of pages6
ISBN (Electronic)9781728164328
DOIs
StatePublished - Jun 2020
Event2020 IEEE International Symposium on Information Theory, ISIT 2020 - Los Angeles, United States
Duration: 21 Jul 202026 Jul 2020

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2020-June

Conference

Conference2020 IEEE International Symposium on Information Theory, ISIT 2020
Country/TerritoryUnited States
CityLos Angeles
Period21/07/2026/07/20

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'The Error Probability of Maximum-Likelihood Decoding over Two Deletion/Insertion Channels'. Together they form a unique fingerprint.

Cite this