Abstract
The ferromagnetic 10M Ni-Mn-Ga alloy exhibits complex magnetic and mechanical microstructures, which are expected to form barriers for motion of macro twin boundaries. Here, the contributions of both microstructures to the magnitude of the twinning stress property are investigated experimentally. A series of uniaxial loading-unloading curves are taken under different orientation angles of a constant magnetic field. The different 180 ° magnetic domains microstructures that are formed across the twin boundary in each case are visualised using a magneto optical film. Analysis of the different loading curves and the corresponding magnetic microstructures show that the latter does not contribute to the barriers for twin boundary motion. In accordance, the internal resisting stress for twin boundary motion under any magnetic field can be taken as the twinning stress measured in the absence of an external field. In addition, a statistical analysis of the fine features in the loading profiles reveals that the barrier for twinning is associated with a μ m sized characteristic length scale. This length scale corresponds to the typical thickness of micro-twinning laminates that constitute a mechanical microstructure. These findings indicate that the magnitude of the twinning stress in 10M Ni-Mn-Ga is determined by the characteristic fine twinned mechanical microstructure of this alloy.
Original language | English |
---|---|
Article number | 244104 |
Journal | Journal of Applied Physics |
Volume | 118 |
Issue number | 24 |
DOIs | |
State | Published - 28 Dec 2015 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy