Abstract
Radio-frequency (RF) carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling RF ion transport at densities where dynamics are strongly influenced by buffer gas collisions. An analytic description of levitating and sweeping forces from phased arrays is obtained, then thermodynamic and kinetic principles are used to calculate ion loss rates in the presence of collisions. This methodology is validated against detailed microscopic SIMION simulations. We then explore a parameter space of special interest for neutrinoless double beta decay experiments: transport of barium ions in xenon at pressures from 1 to 10 bar. Our computations account for molecular ion formation and pressure dependent mobility as well as finite temperature effects. We discuss the challenges associated with achieving suitable operating conditions, which lie beyond the capabilities of existing devices, using presently available or near-future manufacturing techniques.
Original language | American English |
---|---|
Article number | 167000 |
Journal | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Volume | 1039 |
DOIs | |
State | Published - 11 Sep 2022 |
Keywords
- Barium tagging
- Ion transport
- Neutrinoless double beta decay
- RF carpets
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
- Instrumentation