The dynamics of a BI-stable energy harvester: Exploration via slow-fast decomposition and analytical modeling

Nadav Cohen, Izhak Bucher

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The paper discusses the advantages of the bi-stable energy harvester over linear oscillators in the low frequency excitation regime. When excited by low-frequency base motions, a bistable vibration-based energy harvester's response is characterized by a combination of a slow, and a non-stationary fast component. By decomposing the response of the bi-stable system into fast and slow components, some new physical insights into the dynamical properties of the system are obtained. Properties such as mechanical frequency up-conversion, asymmetry in the bi-stable potential of the system and extraction of the backbone curve are explored. The proposed decomposition is demonstrated and explained via numerical and experimental results. A simple, approximate analytical model, for the bi-stable oscillator is proposed and its ability to detect migration towards different vibration regimes is illustrated. An expression for the power output of the harvester is derived from the analytical solution allowing us to tune the bi-stable potential towards optimum performance. The analytical model sheds light on the occurrences of bifurcations in the response of such nonlinear systems and on the optimal values of potential barrier vs. excitation levels.

Original languageEnglish
Title of host publicationASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2012
Pages853-859
Number of pages7
DOIs
StatePublished - 2012
EventASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2012 - Nantes, France
Duration: 2 Jul 20124 Jul 2012

Publication series

NameASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2012
Volume1

Conference

ConferenceASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2012
Country/TerritoryFrance
CityNantes
Period2/07/124/07/12

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'The dynamics of a BI-stable energy harvester: Exploration via slow-fast decomposition and analytical modeling'. Together they form a unique fingerprint.

Cite this