The dopamine circuit as a reward-taxis navigation system

Omer Karin, Uri Alon

Research output: Contribution to journalArticlepeer-review

Abstract

Studying the brain circuits that control behavior is challenging, since in addition to their structural complexity there are continuous feedback interactions between actions and sensed inputs from the environment. It is therefore important to identify mathematical principles that can be used to develop testable hypotheses. In this study, we use ideas and concepts from systems biology to study the dopamine system, which controls learning, motivation, and movement. Using data from neuronal recordings in behavioral experiments, we developed a mathematical model for dopamine responses and the effect of dopamine on movement. We show that the dopamine system shares core functional analogies with bacterial chemotaxis. Just as chemotaxis robustly climbs chemical attractant gradients, the dopamine circuit performs ‘reward-taxis’ where the attractant is the expected value of reward. The reward-taxis mechanism provides a simple explanation for scale-invariant dopaminergic responses and for matching in free operant settings, and makes testable quantitative predictions. We propose that reward-taxis is a simple and robust navigation strategy that complements other, more goal-directed navigation mechanisms.
Original languageEnglish
Article numbere1010340
Number of pages24
JournalPLoS Computational Biology
Volume18
Issue number7
DOIs
StatePublished - 25 Jul 2022

All Science Journal Classification (ASJC) codes

  • Genetics
  • Ecology, Evolution, Behavior and Systematics
  • Cellular and Molecular Neuroscience
  • Molecular Biology
  • Ecology
  • Computational Theory and Mathematics
  • Modelling and Simulation

Fingerprint

Dive into the research topics of 'The dopamine circuit as a reward-taxis navigation system'. Together they form a unique fingerprint.

Cite this